ADAPTIVE SIGNAL CONTROL TECHNOLOGY
Agenda

• Every Day Counts Adaptive Signal Control Technology Initiative

• Signal timing problem addressed by ASCT

• Deployment Status

• EDC Goals

• FHWA Model Systems Engineering Docs
Better, Faster, Smarter

Shortening Project Delivery
- Planning & Environmental Linkages
- Legal Sufficiency Enhancements
- Expanding Use of Programmatic Agreements
- Use of In–Lieu Fee and Mitigation Banking
- Clarifying the Scope of Preliminary Design
- Flexibilities in ROW
- Flexibilities in Utility Accommodation and Relocation
- Enhanced Technical Assistance on Ongoing EISs

Technology Innovation
- Warm Mix Asphalt
- Precast Bridge Elements
- Geosynthetic Reinforced Soil
- Safety Edge
- **Adaptive Signal Control Technology**
What Do Motorists Want?

• “Why do I have to wait when there’s nobody else moving”
 – Translation: Equitable distribution of green time

• “Can’t I just drive down the street?”
 – Translation: Progression—driving through successive greens
What is ASCT?

Adaptive Signal Control Technology

1. Monitor Traffic
2. Evaluate Performance
3. Update Timing
The Big Box Scenario – Year 1
TYPICAL Traffic Signal Timing

PEAK 15 Min
Year 9
Year 10
Variability is Normal—And the Problem

PM Peak Period Demand

Demand (VPH)

Time

SB
NBLT
WBLT
WB
EB
NB

PEAK 15 Min

3:00-3:15
3:15-3:30
3:30-3:45
3:45-4:00
4:00-4:15
4:15-4:30
4:30-4:45
4:45-5:00
5:00-5:15
6:15-5:30
5:30-5:45
5:45-6:00
6:00-6:15
6:15-6:30
6:30-6:45
6:45-7:00

250
300
350
400
450
500

NBLT
SB
WBLT
NB
EB
WB
Year 13
Delay & Variability

\[d = d_1(PF) + d_2 + d_3 \]

- Do Nothing
- Periodic Retiming
- Constant Fine Tuning (ASCT)

Source: City of Alpharetta
Benefits of Addressing Variability

Variability in Demand

Do Nothing

Periodic Retiming

Constant Fine Tuning (ASCT)

Delay

Variability in Demand

Source: City of Alpharetta
Adaptive Signal Control Technology

• Better
 – Benefits to Road Users & Agencies
 – Ongoing performance measurement

• Smarter
 – Solves problems that are difficult to address with time-of-day and traffic responsive
 – Saves cost of mundane data collection and retiming

• Faster
 – Reduces retiming intervals from years to minutes
Readily Available ASCT

- ACSLite
- BALANCE
- InSync
- LA ATCS
- MOTION
- OPAC
- RHODES
- SCATS
- SCOOT
- UTOPIA

- QuicTrac
- NWS Voyage
- Multi-criteria Adaptive Control
- KLD
- Intelight
- Synchro Green
- System of the Month
ASCT Deployment Status

Source: Aleksandar Stevanovic, Florida Atlantic University
Barriers to Adoption

• Stakeholder Meeting

• Complexity
 – Model Systems Engineering Document for ASCT

• Cost
 – Planning for Operations
 • Align Arterial Operational Objectives with Planning Goals

• Uncertainty about Benefits
 – Supplement Traditional MOEs
 • Arrivals on Green
 • Green time Utilization
The Vision

Adaptive Signal Control Technology (ASCT) used as an operations strategy where traffic demand and agency capabilities support implementation.
Important Constraints

<table>
<thead>
<tr>
<th>System Cost</th>
<th>Agency Resources</th>
<th>Site Suitability</th>
<th>Existing Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Capital Cost</td>
<td>• Operational</td>
<td>• Arterial v. grid</td>
<td>• Closed loop vs Centrally managed</td>
</tr>
<tr>
<td>• Operations</td>
<td>Objectives and</td>
<td>• Emerging congestion</td>
<td>• Communications</td>
</tr>
<tr>
<td>• Maintenance</td>
<td>Philosophy</td>
<td>• Traditional</td>
<td>• Sensor hardware</td>
</tr>
<tr>
<td>• Staff Training</td>
<td>Operations and</td>
<td>objectives unattainable</td>
<td>• Overall system</td>
</tr>
<tr>
<td>• Funding</td>
<td>Maintenance</td>
<td>methods failed</td>
<td>reliability</td>
</tr>
<tr>
<td>Sources</td>
<td>• Staff skills and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>abilities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19
Goal

• By December 2012, The EDC / ASCT tools are used to guide the implementation or programming of 40 ASCT systems.

• EDC / ASCT tools
 – Systems Engineering Process
 – SE Workshop
 – SE Model Documents
The Role of Systems Engineering

• Rule 940 & 635
• Understanding the problem
• Managing risk
 – Projects getting bogged down with shifting requirements
 – Acquisitions being challenged by unsuccessful bidders/proposers/vendors
 – Projects not meeting agency needs
• (and it is mandatory for federal-aid projects)
Simplified “Vee”
What are my next steps?

I manage a large city, with over 1000 traffic signals, I'm considering adaptive signal control for some intersections, but how do I determine the right place for adaptive?

I'm a technologist and want to use the latest and greatest. I just heard about adaptive control and it sounds great, I want one! What do I do next to get it?

I have very old traffic control system and with my recent grant I think I can afford a new system. Is it time to consider adaptive control?

I have tried time of day coordination and even traffic responsive plan selection, but I feel like there could be something better. Could adaptive control be a better solution?

Due to new air quality standards that are out, I need to improve my network. Is it time to consider adaptive control?

I been working with my consultant/vendor for many years and they have been telling me about new adaptive traffic control systems that I should consider. What locations would be the best fit for an adaptive control system?

I am getting calls on a couple of my intersections and I cannot solve the cycle/phase issues. Will adaptive control help?

I have a corridor that I run time of day coordination, but occasionally diverting traffic overwhelms the corridor, could adaptive control provide a better solution?

The planners are telling me that in the next 5-10 years there will be a 50% growth along the main corridor in the city, the current traffic control system will not handle the traffic based on the current capacity. Is it time to consider an adaptive control?
What are my current situation, needs, goals, and objectives? (Traffic & inventory)

In absence of adaptive control, what more could I do to optimize my current system? What limitations would remain?

Select closest situation and problem statement. OR Create custom problem statement

What scenarios will fit my current and future traffic situation? Will I need to generate custom scenarios?

What scenarios will fit my current and future traffic situation? Will I need to generate custom scenarios?

What will I need to prepare for adaptive control?

Which type of adaptive control is best for me?

Evaluating existing adaptive control systems

How can I make sure the system will work per the stated requirements?

How can I determine that the system fulfills my needs?

Implement System
Applying the Model Systems Engineering Documents

- Is Adaptive an alternative to address needs and objectives.
- What resources are needed to operate and maintain the system.
- Guide an alternatives analysis (Procurement).
Where Do I Get The Document?

File Cabinet

(0% used of 10 GB limit | Upgrade Now!)

Use the files & media area below to share documents with other members of your group.

Every Day Counts Adaptive Signal Control... (1)

Model Systems Engineering Document... 09/08/2011 1.6 MB Eddie Curtis

Model Systems Engineering Documents for ASCT Systems is intended to provide guidance for professionals involved in developing systems engineering documents covering the evaluation, selection and implementation of adaptive systems.
Questions?

http://www.fhwa.dot.gov/everydaycounts

Eddie Curtis, P.E.
Traffic Management Specialist

(404) 562-3920

eddie.curtis@dot.gov